

 Circular List

 v0.1.1

 Table of contents

 	Circular Lists (CList Module)

 	
 Modules

 	CList

 Circular Lists (CList Module)

CList allow to work with circular lists. A circular lists is a finite list that can be traversed
as if it were infinite. This is possible because in a circular list, when you reach the end of the
list, you go back to the beginning and take the first element of the list as if it were next to
the last one. In other words, we could assume that a copy of the original list is inserted at the
end of the list, and so on ad infinitum.
Internally a CList is a map that store the original list (see below original and current list)
and a pointer indicating the current position in base 1 (as Erlang lists).
Although internally a CList is a map, its visual representation (IO.inspect) is:
iex> CList.new([1, 2, 3, 4, 5])
#CList[1, 2, 3, 4, 5]/1
As you can see a list and a pointer will always be displayed. If you move the pointer the representation
will look different, but internally the original list will be the same.
iex> a = CList.new([1, 2, 3, 4, 5])
#CList[1, 2, 3, 4, 5]/1

iex> b = CList.forward(a)
#CList[2, 3, 4, 5, 1]/2

iex> CList.equals?(a, b)
true
You can see that the list and the pointer of a and b differs, but the CLists are equals
because their sequential lists are the same.
And talking about the concept of equal on CLists, it is important to note that 2 CLists are
considered equal if they have the same size and their traversal sequence is exactly the same.
iex> a = CList.new [1, 2, 3, 4, 5, 6]
#CList[1, 2, 3, 4, 5, 6]/1

iex> b = CList.new [5, 6, 1, 2, 3, 4]
#CList[5, 6, 1, 2, 3, 4]/1

iex> CList.equals?(a, b)
true

iex> b = CList.new [6, 5, 1, 2, 3, 4]
#CList[6, 5, 1, 2, 3, 4]/1

iex> CList.equals?(a, b)
false
Original and current list
What CList stores at all times is what we call the current list (i.e., the rotated list) but
implicitly also store what we will call the original list, which is the current list when the
pointer is equal to 1.
iex> a = CList.new([:a, :b, :c, :d, :e])
#CList[:a, :b, :c, :d, :e]/1
Original list: [:a, :b, :c, :d, :e]
Current list: [:a, :b, :c, :d, :e]

iex> CList.forward(a, 3)
#CList[:d, :e, :a, :b, :c]/4
Original list: [:a, :b, :c, :d, :e]
Current list: [:d, :e, :a, :b, :c]

The pointer
Now is time to explain what the pointer value means. When the pointer is, for example, 2, it
means that the first value in the current list is equivalent to the value with index 2 in the
original list (remember, indexes in CList work on a base 1).
When pointer is 1, you see the original list
#CList[1, 2, 3, 4, 5]/1
 ^
 |
 +--+
 |
When pointer is not 1, you see the list rotatated |
#CList[2, 3, 4, 5, 1]/2 |
 | |
 +----------------------------------+

Enumerable
CList implements Enumerable, so you can play with Streams or use Enum.* functions.
iex> a = CList.new([1, 2, 3, 4, 5])
#CList[1, 2, 3, 4, 5]/1

iex> Enum.take(a, 20)
[1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5]

iex> a
 |> Stream.map(fn v -> v * 3 end)
 |> Stream.map(fn v -> v - 1 end)
 |> Enum.take(22)
[2, 5, 8, 11, 14, 2, 5, 8, 11, 14, 2, 5, 8, 11, 14, 2, 5, 8, 11, 14, 2, 5]
Since a CList could be iterated ad infinitum, the Enum.* functions that has not stop condition
will take the current list of the CList as enumerable input.
iex> a = CList.new([1, 2, 3, 4, 5])
#CList[1, 2, 3, 4, 5]/1

iex> Enum.map(a, fn v -> v * 2 end)
[2, 4, 6, 8, 10]

iex> rl = CList.forward(a, 3)
#CList[4, 5, 1, 2, 3]/4

iex> Enum.map(a, fn v -> v * 2 end)
[8, 10, 2, 4, 6]
TODO
One million tests ¯_(ツ)_/¯
How to use
defmodule TestCList do
 use CList

 def hello do
 ["h", "e", "l", "l", "o", " ", "w", "o", "r", "l", "d", "! "]
 |> CList.new()
 |> say_hello_but_in_a_cool_way()
 end

 def say_hello_but_in_a_cool_way(cl, count \\ 5)
 def say_hello_but_in_a_cool_way(_, 0), do: IO.write("\n")
 def say_hello_but_in_a_cool_way(CList.match([c | l]), count) do
 IO.write(c)
 :timer.sleep(200)
 say_hello_but_in_a_cool_way(CList.forward(l), count - (c == "! " && 1 || 0))
 end
end
You may also want to import match/1 and forward/1 to avoid having to explicitly specify
CList...
defmodule TestCList do
 use CList
 import CList, only: [match: 1, forward: 1]
 ...

 def say_hello_but_in_a_cool_way(match([c | l]), count) do
 IO.write(c)
 :timer.sleep(200)
 say_hello_but_in_a_cool_way(forward(l), count - (c == "! " && 1 || 0))
 end

 ...
end
Installation
If available in Hex, the package can be installed
by adding clist to your list of dependencies in mix.exs:
def deps do
 [
 {:clist, "~> 0.1.0"}
]
end
Documentation can be generated with ExDoc
and published on HexDocs. Once published, the docs can
be found at https://hexdocs.pm/clist.

CList

Circular Lists (CList Module)
CList allow to work with circular lists. A circular lists is a finite list that can be traversed
as if it were infinite. This is possible because in a circular list, when you reach the end of the
list, you go back to the beginning and take the first element of the list as if it were next to
the last one. In other words, we could assume that a copy of the original list is inserted at the
end of the list, and so on ad infinitum.
Internally a CList is a map that store the original list (see below original and current list)
and a pointer indicating the current position in base 1 (as Erlang lists).
Although internally a CList is a map, its visual representation (IO.inspect) is:
iex> CList.new([1, 2, 3, 4, 5])
#CList[1, 2, 3, 4, 5]/1
As you can see a list and a pointer will always be displayed. If you move the pointer the representation
will look different, but internally the original list will be the same.
iex> a = CList.new([1, 2, 3, 4, 5])
#CList[1, 2, 3, 4, 5]/1

iex> b = CList.forward(a)
#CList[2, 3, 4, 5, 1]/2

iex> CList.equals?(a, b)
true
You can see that the list and the pointer of a and b differs, but the CLists are equals
because their sequential lists are the same.
And talking about the concept of equal on CLists, it is important to note that 2 CLists are
considered equal if they have the same size and their traversal sequence is exactly the same.
iex> a = CList.new [1, 2, 3, 4, 5, 6]
#CList[1, 2, 3, 4, 5, 6]/1

iex> b = CList.new [5, 6, 1, 2, 3, 4]
#CList[5, 6, 1, 2, 3, 4]/1

iex> CList.equals?(a, b)
true

iex> b = CList.new [6, 5, 1, 2, 3, 4]
#CList[6, 5, 1, 2, 3, 4]/1

iex> CList.equals?(a, b)
false
Original and current list
What CList stores at all times is what we call the current list (i.e., the rotated list) but
implicitly also store what we will call the original list, which is the current list when the
pointer is equal to 1.
iex> a = CList.new([:a, :b, :c, :d, :e])
#CList[:a, :b, :c, :d, :e]/1
Original list: [:a, :b, :c, :d, :e]
Current list: [:a, :b, :c, :d, :e]

iex> CList.forward(a, 3)
#CList[:d, :e, :a, :b, :c]/4
Original list: [:a, :b, :c, :d, :e]
Current list: [:d, :e, :a, :b, :c]

The pointer
Now is time to explain what the pointer value means. When the pointer is, for example, 2, it
means that the first value in the current list is equivalent to the value with index 2 in the
original list (remember, indexes in CList work on a base 1).
When pointer is 1, you see the original list
#CList[1, 2, 3, 4, 5]/1
 ^
 |
 +--+
 |
When pointer is not 1, you see the list rotatated |
#CList[2, 3, 4, 5, 1]/2 |
 | |
 +----------------------------------+

Enumerable
CList implements Enumerable, so you can play with Streams or use Enum.* functions.
iex> a = CList.new([1, 2, 3, 4, 5])
#CList[1, 2, 3, 4, 5]/1

iex> Enum.take(a, 20)
[1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5]

iex> a
 |> Stream.map(fn v -> v * 3 end)
 |> Stream.map(fn v -> v - 1 end)
 |> Enum.take(22)
[2, 5, 8, 11, 14, 2, 5, 8, 11, 14, 2, 5, 8, 11, 14, 2, 5, 8, 11, 14, 2, 5]
Since a CList could be iterated ad infinitum, the Enum.* functions that has not stop condition
will take the current list of the CList as enumerable input.
iex> a = CList.new([1, 2, 3, 4, 5])
#CList[1, 2, 3, 4, 5]/1

iex> Enum.map(a, fn v -> v * 2 end)
[2, 4, 6, 8, 10]

iex> rl = CList.forward(a, 3)
#CList[4, 5, 1, 2, 3]/4

iex> Enum.map(a, fn v -> v * 2 end)
[8, 10, 2, 4, 6]
TODO
One million tests ¯_(ツ)_/¯
How to use
defmodule TestCList do
 use CList

 def hello do
 ["h", "e", "l", "l", "o", " ", "w", "o", "r", "l", "d", "! "]
 |> CList.new()
 |> say_hello_but_in_a_cool_way()
 end

 def say_hello_but_in_a_cool_way(cl, count \\ 5)
 def say_hello_but_in_a_cool_way(_, 0), do: IO.write("\n")
 def say_hello_but_in_a_cool_way(CList.match([c | l]), count) do
 IO.write(c)
 :timer.sleep(200)
 say_hello_but_in_a_cool_way(CList.forward(l), count - (c == "! " && 1 || 0))
 end
end
You may also want to import match/1 and forward/1 to avoid having to explicitly specify
CList...
defmodule TestCList do
 use CList
 import CList, only: [match: 1, forward: 1]
 ...

 def say_hello_but_in_a_cool_way(match([c | l]), count) do
 IO.write(c)
 :timer.sleep(200)
 say_hello_but_in_a_cool_way(forward(l), count - (c == "! " && 1 || 0))
 end

 ...
end
Installation
If available in Hex, the package can be installed
by adding clist to your list of dependencies in mix.exs:
def deps do
 [
 {:clist, "~> 0.1.0"}
]
end
Documentation can be generated with ExDoc
and published on HexDocs. Once published, the docs can
be found at https://hexdocs.pm/clist.

 Summary

 Types

 t()

 Functions

 equals?(left, right)

 Compare 2 CList and return true if the sequence obtained when traversing both lists are equal
regardless of whether the original list is the same or not.

 forward(clist, count \\ 1)

 Take a CList, move de pointer count units and return the new CList.

 from_range(range)

 Just an alias for new(range).

 match(list)

 Used to match CList in the style of erlang list pattern. Ex

 new(list)

 Create a new CList from a list or a range. The initial list/range will be the original list and
the pointer of the CList will be initialized to 1.

 next(clist)

 Take a CList, extract the first value of the current list and move de pointer 1 unit. Return the
value and the new CList.

 ptr(clist)

 Return the current value of the pointer.

 ptr(clist, new_ptr)

 Set the current value of the pointer, adjust the list according to the pointer value and returns
the new list.

 reset(clist)

 Reset the pointer of the list to 1 and return the new CList. It is equivalent to call
ptr(rlist, 1).

 size(clist)

 Return the size of the original list.

 take(clist, count)

 It is the same that call Enum.take(rlist, count).

 to_list(clist)

 Take a CList and return the current list (not the original list).

 to_tuple(clist)

 Return the current list as a tuple.

 Types

 t()

 @type t() :: %CList{list: term(), ptr: term()}

 Functions

 equals?(left, right)

 @spec equals?(left :: t(), right :: t()) :: boolean()

Compare 2 CList and return true if the sequence obtained when traversing both lists are equal
regardless of whether the original list is the same or not.

 forward(clist, count \\ 1)

 @spec forward(clist :: t(), count :: non_neg_integer()) :: t()

Take a CList, move de pointer count units and return the new CList.
iex> rl = CList.new([1, 2, 3, 4, 5])
#CList[1, 2, 3, 4, 5]/1

iex> rl = CList.forward(rl)
#CList[2, 3, 4, 5, 1]/2

iex> rl = CList.forward(rl, 3)
#CList[5, 1, 2, 3, 4]/5

 from_range(range)

 @spec from_range(range :: Range.t()) :: t()

Just an alias for new(range).

 match(list)

 (macro)

Used to match CList in the style of erlang list pattern. Ex:
defmodule Tests do
 use CList
 import CList

 def test(match [h | t]) do
 IO.puts "H: #{h}"
 IO.inspect t, label: "T"
 :timer.sleep(1000)
 test(forward t)
 end
end

rl = CList.new([1,2,3])
Tests.test(rl)
Output:
H: 1
T: #CList[1, 2, 3]/1
H: 2
T: #CList[2, 3, 1]/2
H: 3
T: #CList[3, 1, 2]/3
H: 1
T: #CList[1, 2, 3]/1
H: 2
T: #CList[2, 3, 1]/2
...
...
Combining match and forward/1 you can go through a CList in a very similar way to how you do
it with Erlang lists. You must not forget that, since CLists are endless, you must provide an
exit condition when appropriate.

 new(list)

 @spec new(list :: list() | Range.t()) :: t()

Create a new CList from a list or a range. The initial list/range will be the original list and
the pointer of the CList will be initialized to 1.
iex> rl = CList.new([1, 2, 3, 4, 5])
#CList[1, 2, 3, 4, 5]/1

 next(clist)

 @spec next(clist :: t()) :: {term(), t()}

Take a CList, extract the first value of the current list and move de pointer 1 unit. Return the
value and the new CList.
iex> rl = CList.new([1, 2, 3, 4, 5])
#CList[1, 2, 3, 4, 5]/1

iex> {value, rl} = CList.next(rl)
{1, #CList[2, 3, 4, 5, 1]/2}

iex> {value, rl} = CList.next(rl)
{2, #CList[3, 4, 5, 1, 2]/3}

 ptr(clist)

 @spec ptr(clist :: t()) :: non_neg_integer()

Return the current value of the pointer.

 ptr(clist, new_ptr)

 @spec ptr(clist :: t(), ptr :: non_neg_integer()) :: t()

Set the current value of the pointer, adjust the list according to the pointer value and returns
the new list.

 reset(clist)

 @spec reset(clist :: t()) :: t()

Reset the pointer of the list to 1 and return the new CList. It is equivalent to call
ptr(rlist, 1).

 size(clist)

 @spec size(clist :: t()) :: non_neg_integer()

Return the size of the original list.

 take(clist, count)

 @spec take(clist :: t(), count :: non_neg_integer()) :: list()

It is the same that call Enum.take(rlist, count).

 to_list(clist)

 @spec to_list(clist :: t()) :: list()

Take a CList and return the current list (not the original list).

 to_tuple(clist)

 @spec to_tuple(clist :: t()) :: tuple()

Return the current list as a tuple.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

